Persamaan Garis Singgung Lingkaran

Saturday, July 20th 2013. | rumus matematika
advertisement

Apa itu garis singgung lingkaran?

Jika sebelumnya rumushitung telah posting kemungkinan posisi garis terhadap suatu lingkaran, kali ini kita akan belajar mengenai garis singgung lingkaran. Garis yang memotong lingkaran hanya pada satu titik itulah yang disebut garis singgung lingkaran.

Rumus Persamaan Garis Singgung Lingkaran

Persamaan Garis Singgung Lingkaran yang Melalui Suatu Titik pada Lingkaran

Melalui Titik Persamaan Lingkaran Titik Pusat Lingkaran Persamaan Garis Singgungnya
Titik P (x1,y1) x2+y2=r2 (0,0) x1x+y1y= r2
Titik P (x1,y1) (x-a)2+(y-b)2=r2 (a,b) (x1-a) (x-a)+(y1-b) (y-b)= r2
Titik P (x1,y1) x2+y2+2Ax+2By+C= 0 (-A,-B) x1x+y1y+A(x1x)+b(y1y)+C =0

Contoh Soal 1

Jika sebuah garis menyinggung lingkaran di titik (-8,6) dan lingkaran tersebut mempunyai persamaan x2+y2=100. Tentukan persamaan dari garis tersebut?

Jawab : caranya cukup mudah tinggal masukkan ke rumus persamaan garis singgung lingkaran yang pertama
x1x+y1y= r2
-8x+6y = 100
-4x+3y = 50

Contoh Soal 2
tentukan persamaan garis singgung lingkaran (x-4)2 + (y-3)2 = 36 di titik (-2,1)

Jawab
(x1-a) (x-a)+(y1-b) (y-b)= r2
(-2-4) (x-4) + (1-3) (y-3)  = r2
-6 (x-4) + -2(y-3) = 36
-6x+24 -2y+6 = 36
-6x -2y +30 = 36
-6x – 2y = 6
-3x -y – 3=0

Contoh Soal 3

Coba sobat hitung tentukan persamaan gari singgung lingkaran x2+y2+8x-6y+9 = 0 pada titik (-2,5)
Jawab, sama seperti soal-soal sebelumnya sobat tinggal memasukkan ke rumus
dar soal di atas dapat diketahui (-2,5) maka x1 = -2 dan y1 = 5
dari x2+y2+8x-6y+9 = 0 dapat diketahui A = 4, B = -3, dan C =9

x1x+y1y+A(x1x)+b(y1y)+C =0
-2x+5y+4(-2x)-3(5y)+9 = 0
-2x+5y-8x-15y+9 = 0
-10x-10y+9 =0

Sekarang ada pertanyaan, bagaimana cara menentukan persamaan suatu garis singgung lingkaran jika yang diketahui adalah grdiennya bukan titik singgungnya? untuk bisa menjawab pertanyaan tersebut berikut penjelasannya.

Persamaan Garis Singgung Lingkaran Jika Gradiennya Diketahui

Gradien Persamaan Lingkaran Titik Pusat Lingkaran Persamaan Garis Singgungnya
m x2+y2=r2 (0,0) rumus garis singgung lingkaran 1
m (x-a)2+(y-b)2=r2 (a,b) rumus 3
m x2+y2+2Ax+2By+C= 0 (-A,-B) rumus garis singgung lingkaran 2

Contoh Soal
Tentukan persamaan garis singgung lingkaran x2+y2+4x-2y+1=0 yang tegak lurus dengan garis z -3x+4y-1=0

Jawaban :

Langkah Pertama : Tentukan gradien garis singgung lingkaran

“tegak lurus dengan garis -3x+4y-1=0″ maka berlaku
m1 x m2 = -1
-3x+4y-1=0 ⇔4y = 3x + 1 ⇔ m = 3/4
m1 x 3/4 = -1
m1 = -4/3 (gradien garis singgung lingkaran)

Langkah Kedua : tentukan nilai r

dari persamaan x2+y2+4x-2y+1=0 di dapat titik pusa (a,b) yaitu (-2,1), a =-2, b =1, c =1

r2 = a2+b2-c
r2 = (-2)2+12-1
r2 = 4
r = 2 (-2 tidak masuk karena jari-jari tidak bisa bernilai negatif)

Langkah Ketiga : masukkan ke dalam rumus

pembahasan soal garis singgung lingkaran

Buat sobat hitung, saya sarankan jangan berusaha menghafal rumus persamaan garis singgung lingkaran yang cukup banyak. Coba coba saja dipahami dan cara paling cepat memahami adalah mencoba latihan soal matematika tentang materi ini. Selamat Belajar, semoga bermanfaat.

advertisement

tags:

One Response to “Persamaan Garis Singgung Lingkaran”

  1. […] Dear sobat hitung, dalam matematika ada banyak sekai yang namanya persamaan. Ada persamaan kuadrat, persamaan lingkaran, persamaan trigonometri, persamaan garis lurus, dan persamaan-persamaan lain. Kali ini kita akan […]

Leave a Reply

Artikel Tips Berhitung Terkait Persamaan Garis Singgung Lingkaran