Hi sobat, Bagaimana kabarmu hari ini? semoga kalian tetap sehat dan semangat dalam belajar ya. Kali ini kita akan sama-sama belajar mengenai Bangun ruang tabung. Selengkapnya materi yang akan kita pelajari kali ini..
Contents
- 1 Pengertian Tabung
- 2 Ciri-ciri Tabung
- 3 Bagian-Bagian Tabung
- 4 Sisi Tabung
- 5 Rusuk Tabung
- 6 Jari-jari Tabung
- 7 Tinggi Tabung
- 8 Jaring-jaring Tabung
- 9 Contoh soal
- 10 1. Soal Menghitung Volume Tabung
- 11 2. Soal Menghitung Luas Permukaan tabung
- 12 3. Soal Menghitung Alas, luas selimut, dan luas tanpa tutup
- 13 4. Soal Mencari Jari-jari jika diketahui volumenya
- 14 5. Soal mencari jari-jari jika diketahui luas selimutnya
- 15 6. Soal mencari jari-jari tabung, jika diketahui luas permukaannya
- 16 7. Soal Mencari Tinggi tabung jika diketahui Volumenya
- 17 8. Soal Mencari Tinggi Tabung Jika diketahui luas selimutnya
- 18 9. Soal mencarari Tinggi Tabung jika diketahui Luas Permukaannya
Pengertian Tabung
Tabung diartikan sebagai sebuah bangun ruang yang diatasi oleh 3 buah sisi, yang diantaranya yakni: 1 buah sisi alas, 1 buah sisi atas,dan 1 buah sisi selimut yang menjadi penghubung antara sisi atas dan sisi alas tabung.
Sisis Alas dan sisi atas tabung memiliki bentuk yang sama, yakni berbentuk lingkaran, sedangkan sisi selimutnya berbentuk segi empat yang mengelilingi kedua lingkaran tersebut.
Tabung juga dikenal dengan sebutan cylinder dalam bahasa inggris, dan juga disebut sebagai prisma lingkaran, karena sisi alas dan sisi atasnya merupakan bangun yang kongruen.
Kita bisa menjumpai beberapa bentuk bangun tabung pada kehidupan sehari-hari, seperti: Kaleng susu, kaleng minuman, kaleng cat, bedug, drum dan lainnya.
Sebelum kita lanjut belajar rumus volume tabung, ada baiknya sobat simak terlebih dahulu ciri-ciri, bagian-bagian, dan jaring-jaring tabung.
Simak penjelasannya berikut..
Ciri-ciri Tabung
Nah, berikut ini adalah ciri-ciri pada bangun tabung:
- Terdiri dari 3 buah sisi, yakni 2 buah sisi lingkaran dan 1 buah sisi segi empat.
- Sisi yang berbentuk lingkaran merupakan alas dan tutup tabung, sedangkan
- Sisi berbentuk segi empar yang mengelilingi alas dan tutup adalah selimut tabung.
- Tabung tidak memiliki titik sudut.
- Tabung memiliki 2 buah rusuk, yakni rusuk yang mengelilingi alas dan tutup tabung.
- Jari-jari tabung merupakan panjang jari-jari lingkaran yang membentuk tabung, dan
- Tinggi tabung merupakan jarak yang memisahkan antara kedua lingkaran pada tabung (alas dan tutup).
Baca Juga: Keliling Segitiga: Rumus, Contoh Soal dan Pembahasan
Selanjutnya kita akan belajar..
Bagian-Bagian Tabung
Berikut ini adalah bagian-bagian pada tabung:
Sisi Tabung
Yaitu sisi atau bagian yang membatasi ruangan didalam tabung dengan ruangan yang ada disekitarnya. Sisi tabung tersusun atas dua buah lingkaran dan sebuah sisi lengkung segi empat.
Kemudian…
Rusuk Tabung
Yaitu perpotongan antara dua sisi tabung. Rusuk tabung merupakan lengkungan lingkaran yang terletak pada sisi alas dan tutup tabung.
Jari-jari Tabung
Yaitu jarak antara titik pusat lingkaran pada alas dan tutup tabung dengan rusuk tabung. Adapun panjang 2 kali dari jari-jari tabung disebut dengan diameter tabung. kemudian
Tinggi Tabung
Yaitu jarak antara titik pusat lingkaran pada alas tabung dengan titik pusat pada tutup tabung. atau bisa juga disebut, tinggi tabung merupakan lebar selimut tabung.
Selanjutnya kita akan mempelajari..
Jaring-jaring Tabung
Jaring-jaring pada tabung merupakan gabungan dari berberapa bangun penyusun bangun ruang. Jari-jari tabung tersusun atas 2 buah lingkaran dan 1 buah persegi panjang. Contoh dari jari-jari tabung bisa dilihat pada gambar berikut:
Pada gambar diatas, bangun yang berbentuk lingkaran merupakan alas dan tutup tabung, sedangkan bentuk persegi panjang merupakan selimut tabung.
Rumus Tabung: Volume Tabung dan Luas Permukaan Tabung
Berikut ini kami rangkum kumpulan rumus pada tabung seperti: Rumus luas tabung, volume tabung, luas alas tabung, luas selimut, luas tabung tanpa tutup, dan rumus mencari jari-jari dan tinggi tabung…
Rumus Volume Tabung (V) | |
Rumus Luas Permukaan Tabung (L) | |
Rumus Luas Alas Tabung (La) | |
Rumus Luas Selimut Tabung (Ls) | |
Rumus Luas Selimut Tabung dengan Diameter (Ls) | |
Rumus Luas Tabung Tanpa Tutup | |
Rumus Jari-jari Tabung jika diketahui Volume (r) | |
Rumus Jari-jari Tabung jika diketahui Selimut Tabung (r) | |
Rumus Jari-jari Tabung jika diketahui Luas Permukaan (r) | Faktor dari |
Rumus Tinggi Tabung jika diketahui Volume (t) | |
Rumus Tinggi Tabung jika diketahui Selimut Tabung (t) | |
Rumus Tinggi Tabung jika diketahui Luas Permukaan (t) |
Contoh soal
1. Soal Menghitung Volume Tabung
Sebuah tabung memiliki jari jari 3,5 cm dan tinggi 10 cm. Berapakah volume tabung tersebut?
Penyelesaian:
V = π x r² x t
V = 22/7 x 3,5 x 3,5 x 10
V = 11 x 35
V = 385 cm³
Jadi, Volme tabung tersebut adalah 385 cm³
2. Soal Menghitung Luas Permukaan tabung
Diketahui sebuah tabung berjari-jari 7 cm, jika tinggi tabugn tersebu adalah 15 cm, berapakah luas permukaan tabung tersebut?
Penyelesaian:
L = 2 x π x r x (r + t)
L = 2 x 22/7 x 7 x (7 + 15)
L = 44 x 22
L = 968 cm²
Jadi, luas permukaan tabung tersebut adalah 968 cm²
3. Soal Menghitung Alas, luas selimut, dan luas tanpa tutup
Sebuah tabung berjari-jari 14 cm dan tingginya 10 cm. Tentukanlah:
a. Luas alas tabung
b. Luas selimut tabung
c. Luas tabung dan tanpa tutup
Penyelesaian:
a. Luas Alas tabung
La = π x r²
La = 22/7 x 14²
La = 22/7 x 196
La = 616 cm²
Jadi, luas alas tabung tersebut adalah 616 cm²
b. Luas Selimut Tabung
Ls = 2 x π x r x t
Ls = 2 x 22/7 x 14 x 10
Ls = 2 x 22/7 x 14 x 10
Ls = 220 cm²
Jadi, luas selimut tabung tersebut adalah 220 cm²
c. Luas tanpa tutup
Luas tanpa tutup = Luas alas + luas selimut
Luas tanpa tutup = 616 + 220
Luas tanpa tutup = 836 cm²
Jadi, luas tabung tanpa tutup adalah 836 cm²
Baca Juga: Luas Layang-Layang : Pengertian, Rumus, Turunan, dan Contoh Soal
4. Soal Mencari Jari-jari jika diketahui volumenya
Diketahui sebuah tabung volumenya 4620 cm³, jika tinggi tabung tersebut adalah 30 cm. Berapakah jari-jari tabung tersebut?
Penyelesaian:
Jadi, Jari-jari tabung tersebut adalah 7 cm
5. Soal mencari jari-jari jika diketahui luas selimutnya
Tentukalah jari-jari tabung, jika diketahui luas selimutnya 396 cm² dan tingginya 7 cm!
Penyelesaian:
r = 9 cm
Jadi, jari-jari tabung tersebut adalah 9 cm.
6. Soal mencari jari-jari tabung, jika diketahui luas permukaannya
Diketahui sebuah tabung mempunyai luas 628 cm². Jika tinggi tabung tersebut 15 cm, berapakah jari-jarinya?
Penyelesaian:
kemudian difaktorkan:
(r – 5 = 0)(r + 20 = 0)
r = 5 dan r = -20
- r = 5 cm memenuhi syarat, karena luas permukaanya senilai 628 cm².
- r = -20 cm tidak memenuhi syarat, karena hasil luasnya bernilai negatif, dan bukan 628 cm².
Sehingga, jari-jari tabung tersebut adalah 5 cm.
Baca Juga: Rumus Deret Geometri, Pengertian, dan Contoh Soal
7. Soal Mencari Tinggi tabung jika diketahui Volumenya
Diketahui, sebuah tabung volumenya 4928 cm³. Jika diketahui, jari-jari tabung adalah 14 cm, berapakah tinggi tabung tersebut?
Penyelesaian:
t = 8 cm
Jadi, tinggi tabung tersebut adalah 8 cm.
8. Soal Mencari Tinggi Tabung Jika diketahui luas selimutnya
Diketahui, luas selimut sebuah tabung adalah 352 cm², jika jari-jari tabung tersebut adalah 3,5 cm, berapakah tinggi tabung tersebut?
Penyelesaian:
t = 16 cm
Jadi, tinggi tabung tersebut adalah 16 cm.
9. Soal mencarari Tinggi Tabung jika diketahui Luas Permukaannya
Diketahui sebuah tabung mempunyai luas permukaan 880 cm². Jika jari-jari tabung adalah 7 cm, berapakah tinggi tabung tersebut?
Penyelesaian:
t = 20 – 7
t = 13 cm
Jadi, tinggi tabung tersebut adalah 13 cm.
Demikianlah sobat, sedikit materi mengenai Rumus tabung beserta contoh soalnya yang dapat kami sampaikan, semoga bermanafaat dan sampai jumpa pada kesempatan yang lainnya 🙂 🙂 🙂
Leave a Reply